Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 609(7927): 582-589, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2016756

RESUMEN

Increased levels of proteases, such as trypsin, in the distal intestine have been implicated in intestinal pathological conditions1-3. However, the players and mechanisms that underlie protease regulation in the intestinal lumen have remained unclear. Here we show that Paraprevotella strains isolated from the faecal microbiome of healthy human donors are potent trypsin-degrading commensals. Mechanistically, Paraprevotella recruit trypsin to the bacterial surface through type IX secretion system-dependent polysaccharide-anchoring proteins to promote trypsin autolysis. Paraprevotella colonization protects IgA from trypsin degradation and enhances the effectiveness of oral vaccines against Citrobacter rodentium. Moreover, Paraprevotella colonization inhibits lethal infection with murine hepatitis virus-2, a mouse coronavirus that is dependent on trypsin and trypsin-like proteases for entry into host cells4,5. Consistently, carriage of putative genes involved in trypsin degradation in the gut microbiome was associated with reduced severity of diarrhoea in patients with SARS-CoV-2 infection. Thus, trypsin-degrading commensal colonization may contribute to the maintenance of intestinal homeostasis and protection from pathogen infection.


Asunto(s)
Microbioma Gastrointestinal , Intestino Grueso , Simbiosis , Tripsina , Administración Oral , Animales , Sistemas de Secreción Bacterianos , Vacunas Bacterianas/administración & dosificación , Vacunas Bacterianas/inmunología , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , COVID-19/complicaciones , Citrobacter rodentium/inmunología , Diarrea/complicaciones , Heces/microbiología , Microbioma Gastrointestinal/genética , Humanos , Inmunoglobulina A/metabolismo , Intestino Grueso/metabolismo , Intestino Grueso/microbiología , Ratones , Virus de la Hepatitis Murina/metabolismo , Virus de la Hepatitis Murina/patogenicidad , Proteolisis , SARS-CoV-2/patogenicidad , Tripsina/metabolismo , Internalización del Virus
2.
Cells ; 11(11)2022 05 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1924204

RESUMEN

Herein, we have verified the interaction between the functional peptides from the SARS-CoV-2 and cell membrane, and we further proved that peptides exhibit little membrane disruption. The specific amino acids (Lys, Ile, Glu, Asn, Gln, etc.) with charge or hydrophobic residues play a significant role during the functional-peptide binding to membrane. The findings could provide the hints related to viral infection and also might pave the way for development of new materials based on peptides with membrane-binding activity, which would enable functional peptides further as peptide adjuvants, in order to help deliver the cancer drug into tumor cells for the efficient tumor therapy.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Humanos , Péptidos/metabolismo , SARS-CoV-2 , Tripsina/metabolismo
3.
Viruses ; 13(12)2021 12 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1555020

RESUMEN

Porcine deltacoronavirus (PDCoV) is a novel coronavirus that causes diarrhea in nursing piglets. Studies showed that PDCoV uses porcine aminopeptidase N (pAPN) as an entry receptor, but the infection of pAPN-knockout cells or pigs with PDCoV revealed that pAPN might be not a critical functional receptor, implying there exists an unidentified receptor involved in PDCoV infection. Herein, we report that sialic acid (SA) can act as an attachment receptor for PDCoV invasion and facilitate its infection. We first demonstrated that the carbohydrates destroyed on the cell membrane using NaIO4 can alleviate the susceptibility of cells to PDCoV. Further study showed that the removal of SA, a typical cell-surface carbohydrate, could influence the PDCoV infectivity to the cells significantly, suggesting that SA was involved in the infection. The results of plaque assay and Western blotting revealed that SA promoted PDCoV infection by increasing the number of viruses binding to SA on the cell surface during the adsorption phase, which was also confirmed by atomic force microscopy at the microscopic level. In in vivo experiments, we found that the distribution levels of PDCoV and SA were closely relevant in the swine intestine, which contains huge amount of trypsin. We further confirmed that SA-binding capacity to PDCoV is related to the pre-treatment of PDCoV with trypsin. In conclusion, SA is a novel attachment receptor for PDCoV infection to enhance its attachment to cells, which is dependent on the pre-treatment of trypsin on PDCoV. This study paves the way for dissecting the mechanisms of PDCoV-host interactions and provides new strategies to control PDCoV infection.


Asunto(s)
Deltacoronavirus/fisiología , Ácido N-Acetilneuramínico/metabolismo , Receptores Virales/metabolismo , Tripsina/metabolismo , Acoplamiento Viral , Animales , Carbohidratos , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/virología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Deltacoronavirus/efectos de los fármacos , Interacciones Huésped-Patógeno , Intestinos/metabolismo , Intestinos/virología , Ácido Peryódico/farmacología , Porcinos , Enfermedades de los Porcinos/virología , Tripsina/farmacología
4.
Int J Mol Sci ; 22(11)2021 May 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1389398

RESUMEN

Trypsin-like proteases (TLPs) belong to a family of serine enzymes with primary substrate specificities for the basic residues, lysine and arginine, in the P1 position. Whilst initially perceived as soluble enzymes that are extracellularly secreted, a number of novel TLPs that are anchored in the cell membrane have since been discovered. Muco-obstructive lung diseases (MucOLDs) are characterised by the accumulation of hyper-concentrated mucus in the small airways, leading to persistent inflammation, infection and dysregulated protease activity. Although neutrophilic serine proteases, particularly neutrophil elastase, have been implicated in the propagation of inflammation and local tissue destruction, it is likely that the serine TLPs also contribute to various disease-relevant processes given the roles that a number of these enzymes play in the activation of both the epithelial sodium channel (ENaC) and protease-activated receptor 2 (PAR2). More recently, significant attention has focused on the activation of viruses such as SARS-CoV-2 by host TLPs. The purpose of this review was to highlight key TLPs linked to the activation of ENaC and PAR2 and their association with airway dehydration and inflammatory signalling pathways, respectively. The role of TLPs in viral infectivity will also be discussed in the context of the inhibition of TLP activities and the potential of these proteases as therapeutic targets.


Asunto(s)
COVID-19/enzimología , Enfermedades Pulmonares Obstructivas/enzimología , SARS-CoV-2/metabolismo , Tripsina/metabolismo , Animales , COVID-19/patología , Canales Epiteliales de Sodio/metabolismo , Humanos , Enfermedades Pulmonares Obstructivas/patología , Receptor PAR-2/metabolismo
5.
J Biol Chem ; 295(36): 12686-12696, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1387615

RESUMEN

Type II transmembrane serine proteases (TTSPs) are a group of enzymes participating in diverse biological processes. Some members of the TTSP family are implicated in viral infection. TMPRSS11A is a TTSP expressed on the surface of airway epithelial cells, which has been shown to cleave and activate spike proteins of the severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome coronaviruses (CoVs). In this study, we examined the mechanism underlying the activation cleavage of TMPRSS11A that converts the one-chain zymogen to a two-chain enzyme. By expression in human embryonic kidney 293, esophageal EC9706, and lung epithelial A549 and 16HBE cells, Western blotting, and site-directed mutagenesis, we found that the activation cleavage of human TMPRSS11A was mediated by autocatalysis. Moreover, we found that TMPRSS11A activation cleavage occurred before the protein reached the cell surface, as indicated by studies with trypsin digestion to remove cell surface proteins, treatment with cell organelle-disturbing agents to block intracellular protein trafficking, and analysis of a soluble form of TMPRSS11A without the transmembrane domain. We also showed that TMPRSS11A was able to cleave the SARS-CoV-2 spike protein. These results reveal an intracellular autocleavage mechanism in TMPRSS11A zymogen activation, which differs from the extracellular zymogen activation reported in other TTSPs. These findings provide new insights into the diverse mechanisms in regulating TTSP activation.


Asunto(s)
Células Epiteliales/metabolismo , Proteínas de la Membrana/metabolismo , Proteolisis , Serina Proteasas/metabolismo , Células A549 , Células Cultivadas , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Dominios Proteicos , Transporte de Proteínas , Mucosa Respiratoria/citología , Serina Proteasas/química , Serina Proteasas/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Tripsina/metabolismo
7.
Biosci Rep ; 41(8)2021 08 27.
Artículo en Inglés | MEDLINE | ID: covidwho-1334001

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2)-induced infection, the cause of coronavirus disease 2019 (COVID-19), is characterized by unprecedented clinical pathologies. One of the most important pathologies, is hypercoagulation and microclots in the lungs of patients. Here we study the effect of isolated SARS-CoV-2 spike protein S1 subunit as potential inflammagen sui generis. Using scanning electron and fluorescence microscopy as well as mass spectrometry, we investigate the potential of this inflammagen to interact with platelets and fibrin(ogen) directly to cause blood hypercoagulation. Using platelet-poor plasma (PPP), we show that spike protein may interfere with blood flow. Mass spectrometry also showed that when spike protein S1 is added to healthy PPP, it results in structural changes to ß and γ fibrin(ogen), complement 3, and prothrombin. These proteins were substantially resistant to trypsinization, in the presence of spike protein S1. Here we suggest that, in part, the presence of spike protein in circulation may contribute to the hypercoagulation in COVID-19 positive patients and may cause substantial impairment of fibrinolysis. Such lytic impairment may result in the persistent large microclots we have noted here and previously in plasma samples of COVID-19 patients. This observation may have important clinical relevance in the treatment of hypercoagulability in COVID-19 patients.


Asunto(s)
COVID-19/patología , Fibrina/metabolismo , Fibrinólisis/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Trombosis/patología , Adulto , Anciano , Amiloide/metabolismo , Plaquetas/metabolismo , Complemento C3/metabolismo , Femenino , Fibrinógeno/metabolismo , Humanos , Pulmón/patología , Masculino , Técnicas Analíticas Microfluídicas , Persona de Mediana Edad , Protrombina/metabolismo , SARS-CoV-2/metabolismo , Trombosis/virología , Tripsina/metabolismo
8.
Cell Metab ; 33(8): 1577-1591.e7, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1240259

RESUMEN

Recent clinical data have suggested a correlation between coronavirus disease 2019 (COVID-19) and diabetes. Here, we describe the detection of SARS-CoV-2 viral antigen in pancreatic beta cells in autopsy samples from individuals with COVID-19. Single-cell RNA sequencing and immunostaining from ex vivo infections confirmed that multiple types of pancreatic islet cells were susceptible to SARS-CoV-2, eliciting a cellular stress response and the induction of chemokines. Upon SARS-CoV-2 infection, beta cells showed a lower expression of insulin and a higher expression of alpha and acinar cell markers, including glucagon and trypsin1, respectively, suggesting cellular transdifferentiation. Trajectory analysis indicated that SARS-CoV-2 induced eIF2-pathway-mediated beta cell transdifferentiation, a phenotype that could be reversed with trans-integrated stress response inhibitor (trans-ISRIB). Altogether, this study demonstrates an example of SARS-CoV-2 infection causing cell fate change, which provides further insight into the pathomechanisms of COVID-19.


Asunto(s)
COVID-19/virología , Transdiferenciación Celular , Células Secretoras de Insulina/virología , SARS-CoV-2/patogenicidad , Acetamidas/farmacología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , COVID-19/mortalidad , Transdiferenciación Celular/efectos de los fármacos , Chlorocebus aethiops , Ciclohexilaminas/farmacología , Citocinas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Femenino , Glucagón , Interacciones Huésped-Patógeno , Humanos , Insulina/metabolismo , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Masculino , Persona de Mediana Edad , Fenotipo , Transducción de Señal , Técnicas de Cultivo de Tejidos , Tripsina/metabolismo , Células Vero , Adulto Joven
9.
Int J Biol Macromol ; 179: 601-609, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1131358

RESUMEN

Proteinases with the (chymo)trypsin-like serine/cysteine fold comprise a large superfamily performing their function through the Acid - Base - Nucleophile catalytic triad. In our previous work (Denesyuk AI, Johnson MS, Salo-Ahen OMH, Uversky VN, Denessiouk K. Int J Biol Macromol. 2020;153:399-411), we described a universal three-dimensional (3D) structural motif, NBCZone, that contains eleven amino acids: dipeptide 42 T-43 T, pentapeptide 54 T-55 T-56 T-57 T(base)-58 T, tripeptide 195 T(nucleophile)-196 T-197 T and residue 213 T (T - numeration of amino acids in trypsin). The comparison of the NBCZones among the members of the (chymo)trypsin-like protease family suggested the existence of 15 distinct groups. Within each group, the NBCZones incorporate an identical set of conserved interactions and bonds. In the present work, the structural environment of the catalytic acid at the position 102 T and the fourth member of the "catalytic tetrad" at the position 214 T was analyzed in 169 3D structures of proteinases with the (chymo)trypsin-like serine/cysteine fold. We have identified a complete Structural Catalytic Core (SCC) consisting of two classes and four groups. The proteinases belonging to different classes and groups differ from each other by the nature of the interaction between their N- and C-terminal ß-barrels. Comparative analysis of the 3CLpro(s) from SARS-CoV-2 and SARS-CoV, used as an example, showed that the amino acids at positions 103 T and 179 T affect the nature of the interaction of the "catalytic acid" core (102 T-Core, N-terminal ß-barrel) with the "supplementary" core (S-Core, C-terminal ß-barrel), which ultimately results in the modulation of the enzymatic activity. The reported analysis represents an important standalone contribution to the analysis and systematization of the 3D structures of (chymo)trypsin-like serine/cysteine fold proteinases. The use of the developed approach for the comparison of 3D structures will allow, in the event of the appearance of new representatives of a given fold in the PDB, to quickly determine their structural homologues with the identification of possible differences.


Asunto(s)
Proteasas de Cisteína/química , Serina Proteasas/química , Secuencia de Aminoácidos , Sitios de Unión , COVID-19/metabolismo , Catálisis , Dominio Catalítico , Proteasas de Cisteína/metabolismo , Humanos , Modelos Moleculares , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/metabolismo , SARS-CoV-2/química , SARS-CoV-2/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/metabolismo , Serina Proteasas/metabolismo , Tripsina/metabolismo
10.
Emerg Microbes Infect ; 9(1): 457-468, 2020.
Artículo en Inglés | MEDLINE | ID: covidwho-124862

RESUMEN

Porcine deltacoronavirus (PDCoV) is a newly emerging threat to the global porcine industry. PDCoV has been successfully isolated using various medium additives including trypsin, and although we know it is important for viral replication, the mechanism has not been fully elucidated. Here, we systematically investigated the role of trypsin in PDCoV replication including cell entry, cell-to-cell membrane fusion and virus release. Using pseudovirus entry assays, we demonstrated that PDCoV entry is not trypsin dependent. Furthermore, unlike porcine epidemic diarrhea virus (PEDV), in which trypsin is important for the release of virus from infected cells, PDCoV release was not affected by trypsin. We also demonstrated that trypsin promotes PDCoV replication by enhancing cell-to-cell membrane fusion. Most importantly, our study illustrates two distinct spreading patterns from infected cells to uninfected cells during PDCoV transmission, and the role of trypsin in PDCoV replication in cells with different virus spreading types. Overall, these results clarify that trypsin promotes PDCoV replication by mediating cell-to-cell fusion transmission but is not crucial for viral entry. This knowledge can potentially contribute to improvement of virus production efficiency in culture, not only for vaccine preparation but also to develop antiviral treatments.


Asunto(s)
Fusión Celular , Coronavirus/fisiología , Fusión de Membrana , Tripsina/metabolismo , Animales , Línea Celular , Humanos , Porcinos , Internalización del Virus , Replicación Viral
11.
Nat Commun ; 11(1): 1620, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: covidwho-17830

RESUMEN

Since 2002, beta coronaviruses (CoV) have caused three zoonotic outbreaks, SARS-CoV in 2002-2003, MERS-CoV in 2012, and the newly emerged SARS-CoV-2 in late 2019. However, little is currently known about the biology of SARS-CoV-2. Here, using SARS-CoV-2 S protein pseudovirus system, we confirm that human angiotensin converting enzyme 2 (hACE2) is the receptor for SARS-CoV-2, find that SARS-CoV-2 enters 293/hACE2 cells mainly through endocytosis, that PIKfyve, TPC2, and cathepsin L are critical for entry, and that SARS-CoV-2 S protein is less stable than SARS-CoV S. Polyclonal anti-SARS S1 antibodies T62 inhibit entry of SARS-CoV S but not SARS-CoV-2 S pseudovirions. Further studies using recovered SARS and COVID-19 patients' sera show limited cross-neutralization, suggesting that recovery from one infection might not protect against the other. Our results present potential targets for development of drugs and vaccines for SARS-CoV-2.


Asunto(s)
Anticuerpos Antivirales/inmunología , Betacoronavirus/fisiología , Anticuerpos ampliamente neutralizantes/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Betacoronavirus/química , Betacoronavirus/inmunología , COVID-19 , Canales de Calcio/metabolismo , Catepsina L/metabolismo , Catepsinas/antagonistas & inhibidores , Catepsinas/metabolismo , Fusión Celular , Infecciones por Coronavirus/inmunología , Reacciones Cruzadas , Endocitosis , Células Gigantes/fisiología , Células HEK293 , Humanos , Pruebas de Neutralización , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neumonía Viral/inmunología , Dominios Proteicos , Multimerización de Proteína , Receptores Virales/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , SARS-CoV-2 , Síndrome Respiratorio Agudo Grave/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Tripsina/metabolismo
12.
Nat Microbiol ; 5(4): 562-569, 2020 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1966

RESUMEN

Over the past 20 years, several coronaviruses have crossed the species barrier into humans, causing outbreaks of severe, and often fatal, respiratory illness. Since SARS-CoV was first identified in animal markets, global viromics projects have discovered thousands of coronavirus sequences in diverse animals and geographic regions. Unfortunately, there are few tools available to functionally test these viruses for their ability to infect humans, which has severely hampered efforts to predict the next zoonotic viral outbreak. Here, we developed an approach to rapidly screen lineage B betacoronaviruses, such as SARS-CoV and the recent SARS-CoV-2, for receptor usage and their ability to infect cell types from different species. We show that host protease processing during viral entry is a significant barrier for several lineage B viruses and that bypassing this barrier allows several lineage B viruses to enter human cells through an unknown receptor. We also demonstrate how different lineage B viruses can recombine to gain entry into human cells, and confirm that human ACE2 is the receptor for the recently emerging SARS-CoV-2.


Asunto(s)
Betacoronavirus/fisiología , Peptidil-Dipeptidasa A/metabolismo , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Enzima Convertidora de Angiotensina 2 , Animales , Betacoronavirus/química , Betacoronavirus/clasificación , Antígenos CD13/metabolismo , COVID-19 , Línea Celular , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Dipeptidil Peptidasa 4/metabolismo , Humanos , Mutación , Pandemias , Peptidil-Dipeptidasa A/química , Peptidil-Dipeptidasa A/genética , Neumonía Viral/metabolismo , Neumonía Viral/virología , Dominios Proteicos , Receptores de Coronavirus , Receptores Virales/química , Receptores Virales/genética , Proteínas Recombinantes de Fusión/metabolismo , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/química , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Tripsina/metabolismo
13.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: covidwho-908

RESUMEN

Antibody-dependent enhancement (ADE) of viral entry has been a major concern for epidemiology, vaccine development, and antibody-based drug therapy. However, the molecular mechanism behind ADE is still elusive. Coronavirus spike protein mediates viral entry into cells by first binding to a receptor on the host cell surface and then fusing viral and host membranes. In this study, we investigated how a neutralizing monoclonal antibody (MAb), which targets the receptor-binding domain (RBD) of Middle East respiratory syndrome (MERS) coronavirus spike, mediates viral entry using pseudovirus entry and biochemical assays. Our results showed that MAb binds to the virus surface spike, allowing it to undergo conformational changes and become prone to proteolytic activation. Meanwhile, MAb binds to cell surface IgG Fc receptor, guiding viral entry through canonical viral-receptor-dependent pathways. Our data suggest that the antibody/Fc-receptor complex functionally mimics viral receptor in mediating viral entry. Moreover, we characterized MAb dosages in viral-receptor-dependent, Fc-receptor-dependent, and both-receptors-dependent viral entry pathways, delineating guidelines on MAb usages in treating viral infections. Our study reveals a novel molecular mechanism for antibody-enhanced viral entry and can guide future vaccination and antiviral strategies.IMPORTANCE Antibody-dependent enhancement (ADE) of viral entry has been observed for many viruses. It was shown that antibodies target one serotype of viruses but only subneutralize another, leading to ADE of the latter viruses. Here we identify a novel mechanism for ADE: a neutralizing antibody binds to the surface spike protein of coronaviruses like a viral receptor, triggers a conformational change of the spike, and mediates viral entry into IgG Fc receptor-expressing cells through canonical viral-receptor-dependent pathways. We further evaluated how antibody dosages impacted viral entry into cells expressing viral receptor, Fc receptor, or both receptors. This study reveals complex roles of antibodies in viral entry and can guide future vaccine design and antibody-based drug therapy.


Asunto(s)
Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/metabolismo , Anticuerpos Antivirales/metabolismo , Línea Celular , Dipeptidil Peptidasa 4/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Péptido Hidrolasas/metabolismo , Proproteína Convertasas/antagonistas & inhibidores , Proproteína Convertasas/metabolismo , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína , Receptores Fc/metabolismo , Receptores de IgG/inmunología , Receptores de IgG/metabolismo , Receptores Virales/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Tripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA